偏头痛与扩大的血管周围间隙之间的关系-凯发娱乐官网

偏头痛与扩大的血管周围间隙之间的关系
the relationship between migraine and enlarged perivascular spaces
doi: , , html, , 下载: 1  浏览: 13  国家自然科学基金支持
作者: 康富丽, 王 怡, 蔡青青, 马璟曦*:重庆医科大学,重庆;重庆市人民医院神经内科,重庆;廖金成:重庆市人民医院神经内科,重庆;薛瑞灵:重庆医科大学,重庆;重庆市人民医院康复医学科,重庆;李佳妮:重庆医科大学附属第二医院神经内科,重庆
关键词: ;;;;;;;
摘要: 偏头痛(migraine)是一种原发性、终身性神经系统疾病,其反复发作可能与脑小血管病(cerebral small vessel disease, csvd)有关。偏头痛缺乏特异影像学特征,由偏头痛引起的脑小血管病的特征在磁共振上可能表现为无症状腔隙性梗死(lis)、脑白质病变(wmls)、血管周围间隙扩大(enlarged perivascular spaces, epvs)和脑微出血(cmbs)。目前已有越来越多的研究探讨了偏头痛与血管周围间隙扩大之间的关系。胶质淋巴系统(glymphatic system, gs)是近年来神经科学领域的新方向,是脑内代谢废物清除的重要途径,其与偏头痛之间的关系的研究也日渐增多,而血管周围间隙(perivascular spaces, pvs)可作为gs发挥作用的重要环节之一。本综述总结了gs、epvs的形成机制以及二者与偏头痛之间的相关关系,以期临床上对gs、epvs以及偏头痛有更多的关注及研究,为偏头痛的诊断、预防及治疗提供新思路。
abstract: migraine is a primary, lifespan neurological disorder with recurrent attacks that may be associated with cerebral small vessel disease (csvd). migraine lacks specific neuroimaging findings, and csvd caused by migraine may be characterized by silent lacunar infarcts (lis), white-matter lesions (wmls), enlarged perivascular spaces (epvs) and cerebral microbleeds (cmbs) on magnetic resonance. there is growing evidence to shed light on the relevant relationship between epvs and migraine. recently, glymphatic system (gs), a new direction in neuroscience, is an important pathway for the removal of metabolic wastes from the brain, and a growing number of studies have explored the relationship between gs and migraine. meanwhile, the perivascular spaces (pvs) can be one of the important links in the role of gs. this review summarizes the formation mechanism of gs and epvs and the potential correlation between them and migraine, aims to have more clinical attention and research on gs, epvs, and migraine and provide new ideas for the diagnosis, prevention, and treatment of migraine.
文章引用:康富丽, 王怡, 蔡青青, 廖金成, 薛瑞灵, 李佳妮, 马璟曦. 偏头痛与扩大的血管周围间隙之间的关系[j]. 临床医学进展, 2024, 14(10): 782-787.

1. 引言

偏头痛(migraine)是一种以单侧或双侧位置、搏动性和中/重度疼痛,因常规体力活动(如走路或爬楼梯)而加重或引起恶心、呕吐和(或)畏光和畏声为特征的终身性神经系统疾病。在2019年的369种人类残疾疾病中,它已成为世界第二大致残性疾病,且在15~49岁女性致残性疾病中排名第一[1],给全世界14%的人口带来了困扰[2]。偏头痛反复发作可能与脑小血管病(cerebral small vessel disease, csvd)有关[3] [4],csvd是指影响脑小血管并导致出现各种临床表现和神经影像学表现的病理过程,包括无症状性腔隙性脑梗死、脑白质高信号、血管周围间隙增大(enlarged perivascular spaces, epvs)以及脑微出血等。正常的血管周围间隙(perivascular spaces, pvs)在mri上不可见,只有epvs可以被常规mri检测到。epvs已被建议作为脑小血管病的影像学标志[5],且由于它们在其他神经系统疾病(比如脑淀粉样血管病、自发性颅内出血、帕金森病等)的发病机制中也起着不可或缺的作用,已有越来越多的研究对epvs的作用进行了探讨。

近年来,胶质淋巴系统(glymphatic system, gs)的提出也为神经系统疾病的研究提供了新方向。已有研究发现,阿尔茨海默病[6]、帕金森病[7]、创伤后脑损伤[8]、偏头痛[9]、睡眠障碍[10]等疾病均与gs受损有关。同时,也有越来越多的证据提示epvs可反映gs功能受损,鉴于此,本文将基于胶质淋巴系统对偏头痛与epvs之间的病理生理过程及二者之间的联系的文献进行综述,以期为偏头痛的诊断、预防及治疗提供新思路。

2. 胶质淋巴系统

2013年,iliff等人[11]首次利用小分子荧光脑脊液示踪剂的体内双光子和离体荧光成像提出了依赖于星形胶质细胞水通道蛋白(aqp-4)促进脑脊液(cerebrospinal fluid, csf)及间质液(interstitial fluid, isf)交换和清除脑代谢物质的新通路。该通路主要由三部分组成:csf沿动脉旁pvs流入途径;isf沿静脉旁pvs清除途径;csf及isf依赖aqp-4跨实质交换途径。该通道依赖aqp-4使csf沿动脉旁pvs途径流入,并沿静脉旁pvs途径清除isf,促进脑代谢物质的清除。该通道是一个环绕在脑血管周围的复杂的血管周围空间网络,并由于这种胶质依赖性以及与外周淋巴系统功能及结构的同源性,将该通路命名为“胶质淋巴系统”。gs不仅可清除大脑内间质溶质和代谢废物并排出多余的细胞外液,同时可以向大脑运输营养物质(如葡萄糖、脂质、氨基酸、各种生长因子和神经调节剂),维持大脑内环境的稳态[12]

近年来,已有大量研究表明,gs与中枢神经系统疾病相关,尤其是aqp-4极化和表达障碍使gs受损与大脑代谢废物积聚相关的神经退行性病变的关系尤为突出,已有实验证明gs的功能与年龄相关,随着年龄的增加,gs的功能逐渐降低,促进了代谢废物在细胞间质积聚,增加了神经退行性疾病的风险[13]。可溶性淀粉样蛋白β (aβ)存在于健康的年轻大脑间质中,而aβ的清除障碍被认为是与阿尔茨海默病进展相关的aβ斑块沉积的基础[14] [15],且已有研究证明了大部分aβ的清除主要依赖于gs [6]。同时,zhang等人[7]进行的研究表明,aqp-4缺乏加速了小鼠α-突触核蛋白(α-synuclein)的病理沉积、神经变性和帕金森(parkinson’s disease, pd)样症状,提示gs深入参与pd的发生发展。创伤性脑损伤后gs的慢性损伤也可促进tau蛋白的聚集和神经变性的发生[8]。调查研究显示,在睡眠状态下gs的活性显著增强,而在觉醒状态下gs的活性是受抑制的,因此gs受损也可导致睡眠障碍[10] [12]

3. 血管周围间隙

pvs这个名词是在19世纪由德国病理学家rudolf virchow与法国解剖学家charles philippe robin首次提出并以他们的名字被命名为v-r间隙(virchow-robin spaces, vrs) [16]。它是围绕经蛛网膜下腔进入脑实质周围的穿支血管的间质性充满液体的腔隙,作为引流通道并从大脑中运输溶质,具有一定的生理和免疫功能。它的直径通常为1~2 mm,属于正常的解剖结构。正常的pvs在mri上是不可见的,只有扩大的pvs (enlarged perivascular spaces, epvs)可以被常规mri检测到[17]。epvs主要是位于基底节区及半卵圆中心,少数可见于中脑、丘脑及小脑[5],其边界光滑清楚,通常呈圆形、类圆形、线状或管状[18]

epvs确切的病理生理学机制仍不明确,但现有研究为以下的机制提供了线索,① 动脉硬化:研究提示动脉硬化可能导致基底节区epvs的形成[19] [20]。动脉硬化是动脉老化的早期标志,可导致血管壁损伤和重塑,从而促进epvs的形成。另一方面,平滑肌细胞在代谢废物的清除中发挥了重要作用,动脉硬化可使平滑肌细胞受损,进而降低了平滑肌细胞排除代谢废物的能力,导致代谢废物在pvs中的积聚,进一步推动epvs的形成。② 异常的蛋白质聚集:如aβ等异常蛋白质的积聚会阻断皮质动脉上游系统,使isf的排泄受阻,导致epvs的形成。已有证据表明,脑淀粉样血管病的严重程度与epvs的数量和程度有关[21]。而aβ与半卵圆中心epvs的关系也已被charidimou等人证明,同时他们也认为半卵圆中心的epvs是脑淀粉样血管病的标志[22]。③ 脑萎缩:随着年龄的增大,周围组织萎缩,血管和脑组织之间的空间会增大,这可能也解释了epvs的形成。④ 炎症刺激:血管周围的反复炎症可导致epvs,这已在多种疾病中被证明,比如多发性硬化[23]、系统性红斑狼疮[24]等。

近年来,由于它在多种神经系统疾病的发病机制中也起着不可或缺的作用,已有越来越多的研究对它的作用进行了探讨。比如,charidimo等人发现,半卵圆中心严重的epvs与脑淀粉样血管病相关,并提出半卵圆中心严重的epvs可能成为诊断脑淀粉样血管病的神经影像学标志物[21]。同时,epvs与自发性颅内出血有着密不可分的关系[25] [26]。一项基于无创fmri的临床研究也指出,epvs (尤其是基底节区)的数量与帕金森病的进展是密切相关的[27]。也有学者提出,阿尔茨海默病早期aβ在pvs中的异常沉积也可能导致epvs的形成[28]

4. 偏头痛与血管周围间隙

目前已有研究探究了偏头痛与epvs之间的可能关系。其中大部分研究表明,偏头痛与epvs是存在相关性的。例如,其中一项研究表明,与紧张性头痛或无头痛对照组相比,epvs更容易出现在偏头痛患儿中[29]。两例分别为15岁青少年和35岁女性的病例报道均提示epvs可能由偏头痛引起[30] [31]。一项最新的基于3t mri的病例对照研究证明,中脑和半卵圆中心严重的epvs可能是偏头痛的重要预测因子[32]。然而,也有一项基于人群的影像学研究显示,头痛患者的epvs数量没有增加[33],提示头痛与epvs之间无明显相关。因此,目前关于偏头痛与epvs之间的关系国内外仍未得出相对一致的结论。

pvs可作为gs发挥作用的重要环节之一,已有越来越多的研究表明,epvs可用于反映gs功能受损[27] [34],同时也有学者提出gs受损与偏头痛密切相关[9] [35]。gs可有效地清除代谢废物,维持大脑内环境的稳态。降钙素基因相关肽(calcitonin gene-related peptide, cgrp)是一种广泛分布于中枢和外周神经系统的神经肽,被释放后可出现在三个不同的部位:静脉血、脑脊液(csf),以及gs [36]。头痛通常被认为与三叉神经血管系统有关,在三叉神经内,cgrp是最丰富的神经肽,在35%~50%的三叉神经节神经元中表达[37]。它是偏头痛有关的主要神经肽,是一种有效的血管舒张肽,主要介导神经源性炎症并调节伤害性输入[38]。但值得注意的是,由神经纤维释放的cgrp不能轻易透过血脑屏障,而是扩散到pvs,从而进入蛛网膜下腔的脑脊液。此外,cgrp通过csf-isf进入静脉血管的pvs [36]。一项使用硝酸甘油诱导的偏头痛小鼠模型的研究结果提示,gs受损加重偏头痛神经元激活和伤害性传递。其表明aqp-4受到抑制时淋巴流动受损,在偏头痛小鼠中cgrp的水平进一步升高。这与先前提出的偏头痛发作时血浆cgrp水平显著升高[39],脑脊液中的cgrp浓度是血浆中的5倍[40]的结果相一致。这些证据均表明,gs受损可使cgrp的水平进一步升高,导致偏头痛的发生。同时,由于cgrp的清除障碍,使cgrp在pvs中积聚,血管周围的反复炎症刺激即可进一步导致epvs的形成。此外,作为gs发挥作用的关键因素,aqp-4的表达和极化是清除代谢废物所必需的[9] [41]。如果调节aqp-4的变化可以防止gs随后的损伤,那么这可能成为治疗偏头痛的新靶点。

5. 结语

目前关于偏头痛与epvs之间的关系仍没有肯定的结论,国内外大部分学者认为二者是存在相关性的,但由于偏头痛本身的复杂性及对epvs的定义以及研究方法等的不一致,仍有极少数学者认为二者之间无确切联系。因此,两者之间的关系仍需进一步探究。此外,偏头痛患者中epvs形成的具体机制目前还不明确,gs受损可能是偏头痛患者epvs出现的机制之一,未来还需要更多的研究对其进行深入探讨,以期为偏头痛的诊断、预防及治疗提供新的依据。

基金项目

重庆市科卫联合医学科研项目(2024msxm127),重庆市卫生健康委医学科研项目(2023wsjk008),国家自然科学基金(82402983),重庆市自然科学基金(cstb2022bsxm-jcx0049),重庆市卫生健康委员会(2024qnxmo43)。

notes

*通讯作者。

参考文献

[1] diseases, g.b.d. and injuries, c. (2020) global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. the lancet, 396, 1204-1222.
[2] stovner, l.j., hagen, k., linde, m. and steiner, t.j. (2022) the global prevalence of headache: an update, with analysis of the influences of methodological factors on prevalence estimates. the journal of headache and pain, 23, article no. 34.
[3] negm, m., housseini, a.m., abdelfatah, m. and asran, a. (2018) relation between migraine pattern and white matter hyperintensities in brain magnetic resonance imaging. the egyptian journal of neurology, psychiatry and neurosurgery, 54, article no. 24.
[4] schain, a.j., melo-carrillo, a., strassman, a.m. and burstein, r. (2017) cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache. the journal of neuroscience, 37, 2904-2915.
[5] wardlaw, j.m., smith, e.e., biessels, g.j., cordonnier, c., fazekas, f., frayne, r., et al. (2013) neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. the lancet neurology, 12, 822-838.
[6] iliff, j.j., wang, m., liao, y., plogg, b.a., peng, w., gundersen, g.a., et al. (2012) a paravascular pathway facilitates csf flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. science translational medicine, 4, 147ra111.
[7] zhang, y., zhang, c., he, x., li, z., meng, j., mao, r., et al. (2023) interaction between the glymphatic system and α-synuclein in parkinson’s disease. molecular neurobiology, 60, 2209-2222.
[8] iliff, j.j., chen, m.j., plog, b.a., zeppenfeld, d.m., soltero, m., yang, l., et al. (2014) impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. the journal of neuroscience, 34, 16180-16193.
[9] huang, w., zhang, y., zhou, y., zong, j., qiu, t., hu, l., et al. (2023) glymphatic dysfunction in migraine mice model. neuroscience, 528, 64-74.
[10] xie, l., kang, h., xu, q., chen, m.j., liao, y., thiyagarajan, m., et al. (2013) sleep drives metabolite clearance from the adult brain. science, 342, 373-377.
[11] iliff, j.j. and nedergaard, m. (2013) is there a cerebral lymphatic system? stroke, 44, s93-s95.
[12] jessen, n.a., munk, a.s.f., lundgaard, i. and nedergaard, m. (2015) the glymphatic system: a beginner’s guide. neurochemical research, 40, 2583-2599.
[13] ma, q., ineichen, b.v., detmar, m. and proulx, s.t. (2017) outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. nature communications, 8, article no. 1434.
[14] rennels, m., blaumanis, o. and grady, p. (1990) rapid solute transport throughout the brain via paravascular fluid pathways. advances in neurology, 52, 431-439.
[15] rennels, m.l., gregory, t.f., blaumanis, o.r., fujimoto, k. and grady, p.a. (1985) evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. brain research, 326, 47-63.
[16] pearce, j.m.s. (2002) rudolf ludwig karl virchow (1821-1902). journal of neurology, 249, 492-493.
[17] brown, r., benveniste, h., black, s.e., charpak, s., dichgans, m., joutel, a., et al. (2018) understanding the role of the perivascular space in cerebral small vessel disease. cardiovascular research, 114, 1462-1473.
[18] 谭鑫, 吴波, 刘鸣. 扩大的血管周围间隙与卒中关系的研究现状及趋势[c]//第十五次中国脑血管病大会2015论文汇编. 南京: 四川大学华西医院神经内科, 2015: 445.
[19] riba-llena, i., jiménez-balado, j., castañé, x., girona, a., lópez-rueda, a., mundet, x., et al. (2018) arterial stiffness is associated with basal ganglia enlarged perivascular spaces and cerebral small vessel disease load. stroke, 49, 1279-1281.
[20] bown, c.w., khan, o.a., liu, d., remedios, s.w., pechman, k.r., terry, j.g., et al. (2023) enlarged perivascular space burden associations with arterial stiffness and cognition. neurobiology of aging, 124, 85-97.
[21] charidimou, a., jaunmuktane, z., baron, j., burnell, m., varlet, p., peeters, a., et al. (2014) white matter perivascular spaces: an mri marker in pathology-proven cerebral amyloid angiopathy? neurology, 82, 57-62.
[22] charidimou, a., hong, y.t., jäger, h.r., fox, z., aigbirhio, f.i., fryer, t.d., et al. (2015) white matter perivascular spaces on magnetic resonance imaging: marker of cerebrovascular amyloid burden? stroke, 46, 1707-1709.
[23] granberg, t., moridi, t., brand, j.s., neumann, s., hlavica, m., piehl, f., et al. (2020) enlarged perivascular spaces in multiple sclerosis on magnetic resonance imaging: a systematic review and meta-analysis. journal of neurology, 267, 3199-3212.
[24] miyata, m., kakeda, s., iwata, s., nakayamada, s., ide, s., watanabe, k., et al. (2017) enlarged perivascular spaces are associated with the disease activity in systemic lupus erythematosus. scientific reports, 7, article no. 12566.
[25] charidimou, a., boulouis, g., pasi, m., auriel, e., van etten, e.s., haley, k., et al. (2017) mri-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. neurology, 88, 1157-1164.
[26] hicks, a.j., sinclair, b., shultz, s.r., pham, w., silbert, l.c., schwartz, d.l., et al. (2023) associations of enlarged perivascular spaces with brain lesions, brain age, and clinical outcomes in chronic traumatic brain injury. neurology, 101, e63-e73.
[27] meng, j., shen, m., lu, y., feng, h., chen, x., xu, d., et al. (2023) correlation of glymphatic system abnormalities with parkinson’s disease progression: a clinical study based on non-invasive fmri. journal of neurology, 271, 457-471.
[28] ramirez, j., berezuk, c., mcneely, a.a., scott, c.j.m., gao, f. and black, s.e. (2014) visible virchow-robin spaces on magnetic resonance imaging of alzheimer’s disease patients and normal elderly from the sunnybrook dementia study. journal of alzheimers disease, 43, 415-424.
[29] schick, s., gahleitner, a., wöber-bingöl, c., wöber, c., ba-ssalamah, a., schoder, m., et al. (1999) virchow-robin spaces in childhood migraine. neuroradiology, 41, 283-287.
[30] samanta, d. (2015) sporadic hemiplegic migraine and giant tumefactive perivascular space: is there an association? acta neurologica belgica, 116, 619-620.
[31] akar, g., eser, m., taşdemir, s.s. and gözke, e. (2015) giant virchow-robin spaces in a patient with migraine: case report. turkiye klinikleri journal of neurology, 10, 36-38.
[32] yuan, z., li, w., tang, h., mei, y., qiu, d., zhang, m., et al. (2023) enlarged perivascular spaces in patients with migraine: a case-control study based on 3t mri. annals of clinical and translational neurology, 10, 1160-1169.
[33] husøy, a.k., indergaard, m.k., honningsvåg, l., håberg, a.k., hagen, k., linde, m., et al. (2015) perivascular spaces and headache: a population-based imaging study (hunt-mri). cephalalgia, 36, 232-239.
[34] mestre, h., kostrikov, s., mehta, r.i. and nedergaard, m. (2017) perivascular spaces, glymphatic dysfunction, and small vessel disease. clinical science, 131, 2257-2274.
[35] schain, a.j., melo-carrillo, a., strassman, a.m. and burstein, r. (2017) cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache. the journal of neuroscience, 37, 2904-2915.
[36] messlinger, k. (2018) the big cgrp flood—sources, sinks and signalling sites in the trigeminovascular system. the journal of headache and pain, 19, article no. 22.
[37] eftekhari, s., salvatore, c.a., calamari, a., kane, s.a., tajti, j. and edvinsson, l. (2010) differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. neuroscience, 169, 683-696.
[38] russo, a.f. (2015) calcitonin gene-related peptide (cgrp): a new target for migraine. annual review of pharmacology and toxicology, 55, 533-552.
[39] goadsby, p.j., edvinsson, l. and ekman, r. (1990) vasoactive peptide release in the extracerebral circulation of humans during migraine headache. annals of neurology, 28, 183-187.
[40] rosic, a.b., dukefoss, d.b., åbjørsbråten, k.s., tang, w., jensen, v., ottersen, o.p., et al. (2019) aquaporin‐4‐independent volume dynamics of astroglial endfeet during cortical spreading depression. glia, 67, 1113-1121.
[41] shirolapov, i., zakharov, a., gochhait, s., pyatin, v., sergeeva, m., romanchuk, n., et al. (2023) aquaporin-4 as the main element of the glymphatic system for clearance of abnormal proteins and prevention of neurodegeneration: a review. wseas transactions on biology and biomedicine, 20, 110-118.
为你推荐
凯发娱乐官网的友情链接
网站地图